

Method	Description of equipment and time resolution	Application	References
Rapid- Mixing	Setup for rapid mixing of two solutions in the NMR tube Image: coaxial insert Water Teflon collar Air bubble DNA/RNA in KC1- free buffer Shigemi tube		Mok KH, Nagashima T, Day IJ, Jones JA, Jones CJV, Dobson CM, Hore PJ. Rapid Sample- Mixing Technique for Transient NMR and Photo- CIDNP Spectroscopy: Applications to Real-Time Protein Folding. J. Am. Chem. Soc. 2003, 125 (41), 12484– 12492. Bessi I, Jonker HRA, Richter C, Schwalbe H. Involvement of Long-Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G-Quadruplex. Angew. Chemie - Int. Ed. 2015, 54 (29), 8444–8448. Lieblein AL, Buck J, Schlepckow K, Fürtig B, Schwalbe, H. Time-Resolved NMR Spectroscopic Studies of DNA i-Motif Folding Reveal Kinetic Partitioning. Angew. Chemie - Int. Ed. 2012, 51 (1), 250–253.

T-jump	The design of the probe consists of an integrated two coil assembly for NMR, generating, primarily, rf magnetic fields, and an additional "wire capacitor" with a shape similar to a saddle coil or cage coil, generating, primarily, an rf electric field, to allow a rapid rf heating of the sample. The inner wire capacitor has a special cage structure with an inner diameter of 2.5 mm. It is optimized to generate a homogeneous rf electric field with an oscillation frequency in the range from 190 MHz to 220 MHz. The wires of the cage act as "plates" of an rf capacitor. Therefore, they produce an rf electric field perpendicular to the main axis of the dielectric and/or conductive sample which causes rapid heating of the sample. The magnitude of the heating effect depends on various factors like the amplitude of the generated electric field, the length of the sample space exposed to it (filling height of the sample tube) as well as on the conductivity and on the mobility of the polar molecules/ions in solution. The temperature gradients vanish rapidly within the first seconds after the T-jump .	Original paper describing the probehead.	Rinnenthal J, Wagner D, Marquardsen T, Krahn A, Engelke F, Schwalbe, H. J. Magnetic Resonance 2015, 251, 84–93.
	(a) (b) (1) (1) (2) (2) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Folding of cold denatured barstar, investigating stable intermediates.	Pintér G, Schwalbe H. (submitted)

P-iump	The apparatus controlling the hydrostatic pressure consists of a high-pressure reservoir	Hydrogen exchange	Alderson TR. Charlier C.
, ,	of hydraulic fluid, either mineral oil or mineral spirit, that is connected through a	, or monitored during	Torchia DA. Anfinrud P. Bax
	spectrometer-controlled valve and stainless-steel tubing to the NMR sample cell (Fig.	refolding of ubiquitin	A. J. Am. Chem. Soc. 2017.
	below). In the open state of the high-pressure valve, the aqueous protein solution inside	initiated by pressure	<i>139</i> , 11036–11039.
	the NMR sample cell rapidly equilibrates its pressure with the oil reservoir, which itself	iump.	,
	is pressurized by a pneumatically driven pump. The NMR sample cell, made of zirconium	2. 1.	
	oxide (from Daedalus Innovations), has an inner diameter (i.d.) of 2.7 mm and an outer		
	diameter of 5 mm, and is rated for pressures of up to 3 kbar. Operating pressures are		
	typically somewhat lower (\sim 2.5 kbar) to reduce wear on the overall system and fatigue		
	of the sample cell. After the high-pressure valve has closed, the pressure in the NMR		
	sample cell remains stable until a spectrometer-controlled low-pressure valve connects		
	the transfer line to a vessel at atmospheric pressure. The aqueous protein solution is		
	compressed by $\sim 8\%$ at 2.5 kbar, and the transducing fluid by $\sim 12\%$. Upon switching		
	back to low pressure, the hydraulic fluid expands into the atmospheric-pressure vessel		
	and is recycled back by the high-pressure pump into the high-pressure reservoir. Work		
	associated with pressurizing the water in the NMR sample cell results in an adiabatic		
	temperature jump of \sim 3°C at 2.5 kbar; depressurization triggers a corresponding drop	Description of P-	Charlier C, Alderson TR,
	in temperature. The change in temperature of the more compressible and lower heat	jump setup	Courtney JM, Ying J,
	capacity transducing oil is considerably larger. Moreover, its high flow speed (up to 150	cycling folding study	Anfinrud P, Bax A. PNAS
		e	2010 11E EA160 EA170
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow	of ubiquitin.	2010, 113, 24109-24170.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure	of ubiquitin.	2018, 113, 24109–24178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure	of ubiquitin.	2016, 115, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the	of ubiquitin.	2016, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N_2 atmosphere. The valve opening speeds are high,	of ubiquitin.	2018, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N_2 atmosphere. The valve opening speeds are high, resulting in rapid pressure changes at the pressure sensor immediately adjacent to	of ubiquitin.	2016, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N ₂ atmosphere. The valve opening speeds are high, resulting in rapid pressure changes at the pressure sensor immediately adjacent to these valves (~1 ms for the 10–90% transition of the sigmoidal pressure profile). The	of ubiquitin.	2016, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N ₂ atmosphere. The valve opening speeds are high, resulting in rapid pressure changes at the pressure sensor immediately adjacent to these valves (~1 ms for the 10–90% transition of the sigmoidal pressure profile). The actual rate of pressure change in the NMR sample, as measured by the resonance	of ubiquitin.	2018, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N ₂ atmosphere. The valve opening speeds are high, resulting in rapid pressure changes at the pressure sensor immediately adjacent to these valves (~1 ms for the 10–90% transition of the sigmoidal pressure profile). The actual rate of pressure change in the NMR sample, as measured by the resonance frequency of water under unlocked conditions, can either be comparable when using	of ubiquitin.	2018, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N ₂ atmosphere. The valve opening speeds are high, resulting in rapid pressure changes at the pressure sensor immediately adjacent to these valves (~1 ms for the 10–90% transition of the sigmoidal pressure profile). The actual rate of pressure change in the NMR sample, as measured by the resonance frequency of water under unlocked conditions, can either be comparable when using large diameter (2-mm i.d.) tubing, or substantially slower when using a small diameter	of ubiquitin.	2018, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N ₂ atmosphere. The valve opening speeds are high, resulting in rapid pressure changes at the pressure sensor immediately adjacent to these valves (~1 ms for the 10–90% transition of the sigmoidal pressure profile). The actual rate of pressure change in the NMR sample, as measured by the resonance frequency of water under unlocked conditions, can either be comparable when using large diameter (2-mm i.d.) tubing, or substantially slower when using a small diameter (e.g. 0.5-mm i.d.). The use of small-diameter tubing reduces the volume of compressed	of ubiquitin.	2018, 113, E4109-E4178.
	m/s) through the valve body and stainless-steel transfer tubing results in turbulent flow and significant frictional heating. Cooling of the pressurized fluid after the high-pressure valve has closed causes a modest drop of the pressure. Opening the high-pressure valve, a second time compensates for this drop. To minimize oxidative processes, the hydraulic fluid is kept under a N ₂ atmosphere. The valve opening speeds are high, resulting in rapid pressure changes at the pressure sensor immediately adjacent to these valves (~1 ms for the 10–90% transition of the sigmoidal pressure profile). The actual rate of pressure change in the NMR sample, as measured by the resonance frequency of water under unlocked conditions, can either be comparable when using large diameter (2-mm i.d.) tubing, or substantially slower when using a small diameter (e.g. 0.5-mm i.d.). The use of small-diameter tubing reduces the volume of compressed transducing fluid, thereby extending longevity of the pump, but friction in the transfer	of ubiquitin.	2018, <i>113</i> , E4109-E4178.

line then limits the rate at which the NMR sample can be pressurized. When using large- diameter (2-mm) tubing for the transfer line, switching times for the low- to high- pressure transition approach 1 ms. However, with the ~8% compression of a 240- μ L aqueous sample, the water-alkane interface will move by ~3.4 mm at a linear velocity of ~3.4 m/s. At 20 °C, this flow velocity corresponds to a Reynolds number of ~9,000, which is about 4.5 times the threshold where turbulence sets in. As a consequence, emulsification of the alkane-based hydraulic fluid into the protein sample can become visible after several hundred pressure cycles. For noncritical applications, where slower switching speeds suffice, we therefore opt to use narrower diameter (1-mm i.d.) tubing,	Stroboscopic measurement of ¹⁵ N chemical shifts of ubiquitin during pressure induced folding to monitor intermediate states indirectly.	Charlier C, Courtney JM, Alderson TR, Anfinrud P, Bax A. <i>J. Am. Chem. Soc.</i> 2018, <i>140</i> , 8096–8099.
which affords switching times in the 3- to 5-ms range.	Direct observation of on pathway folding intermediate of ubiquitin by interrupted folding, rapidly switching between high and low pressure states.	Charlier C, Courtney JM, Anfinrud P, Bax A. <i>J. Phys.</i> <i>Chem. B</i> 2018, <i>122</i> , 11792– 11799.
Major advantage is it can switch in both directions rapidly, allowing more sophisticated pulse sequences to be applied.		

Mixing combined with hypersense	Dynamic Nuclear Polarization. An Oxford Instrument Hypersense polarizer equipped with a 3.35T magnet was employed to hyperpolarize water. An EH-500 Edwards booster was added to the existing Oxford-supplied E2M80 vacuum pump, in order to further reduce operating pressures to below 1 torr. Thus, DNP was usually done at ~1.15 to 1.30 K, by irradiating a 10 mM 4-amino-tetramethylpiperidinyloxy nitroxide radical dissolved in ~150 μ L of a solution consisting of 15% glycerol and 85% H ₂ O (vol/vol) at 0.44 GHz Misserer	Original paper describing combined DNP/ NMR setup.	Frydman L, Blazina D. <i>Nature</i> <i>Physics</i> 2007, <i>3</i> , 415–419.
	\sim 94.1 GH2. Microwave power levels and pumping times were set to 100 mW and 150 min, respectively. The ensuing hyperpolarized water pellets were dissolved with 2.6 mL of 99.9% D ₂ O with and without hypoxanthine; \sim 300 µL of the melted, hyperpolarized samples were then transferred using a preheated (50 °C) tubing line and injected into a medium wall 5-mm tube containing the RNA dissolved in buffered D ₂ O waiting in the NMR magnet. After the mixing, final H ₂ O:D ₂ O ratio was \sim 2%:98%. Injection Setup. An automated injection system was utilized to achieve robust, reproducible transfers, assuring minimum bubble and foam formation. The design of the injection system was previously described. In short, it relies on a two-state valve operation using both forward and backward gas pressures to regulate the volume of hyperpolarized sample reaching the NMR tube, and an Arduino-based software to control the injection system.	Investigating riboswitch conformational change upon ligand binding with DNP signal enhancement for low concentrated samples.	Novakovic M, Olsen GL, Pintér G, Hymon D, Fürtig B, Schwalbe H, Frydman L. <i>PNAS</i> 2020, <i>117</i> , 2449–2455.
	and equilibration pressures of 17 and 3.5 bar.	Metabolomic samples investigated by D-DNP to show the possibilities for low concentration samples.	Dumez JN, Milani J, Vuichoud B, Bornet A, Lalande-Martin J, Tea I, Yon M, Maucourt M, Deborde C, Moing A, Frydman L, Bodenhausen G, Jannin S, Giraudeau P. <i>Analyst</i> 2015, <i>140</i> , 5860–5863.

Light	Solid state/liquid state NMR applications, either in combination with or without DNP.	GPCR rhodopsin	Kubatova N, Mao J, Eckert
induced		dynamics.	CE, Saxena K, Gande SL,
			Wachtveitl J, Glaubitz C,
			Schwalbe H. Angewandte
			Chemie International Edition
			2020, DOI
			10.1002/anie.202003671.
		Channelrhodopsin-2.	Becker-Baldus J, Bamann C,
			Saxena K, Gustmann H,
			Brown LJ, Brown RCD, Reiter
			C, Bamberg E, Wachtveitl J,
			Schwalbe H, Glaubitz C.
			PNAS 2015, 112, 9896–9901.
		Rhodopsin decay	Stehle J, Silvers R, Werner K,
		kinetics of metastate	Chatterjee D, Gande S,
		II and III in solution	Scholz F, Dutta A, Wachtveitl
		state.	J, Klein-Seetharaman J,
			Schwalbe H. Angewandte
			Chemie International Edition
			2014, <i>53</i> , 2078–2084.
		Membrane protein	De Mos J, Jakob A, Becker-
		enzyme kinetics by	Baldus J, Heckel A, Glaubitz
		release of caged	C, Chemistry – A European
		substrate.	Journal 2020, 26, 6789–
			6792.

				,
In-cell		The NMR bioreactor is a modified version of a	Original paper	Cerofolini L, Giuntini S,
NMR		commercial apparatus from Bruker (InsightMR). It	describing the	Barbieri L, Pennestri M,
Bioreactor		consists of a flow NMR tube (o.d. = 5 mm, i.d. = 4.2 mm)	microdialysis setup	Codina A, Fragai M, Banci L,
		connected to a watertight sealing that sets the total	for suspended cells.	Luchinat E, Ravera E.
		sample height to 38 mm. for a total sample volume of		Biophysical journal 2019.
		526 ul. An inlet tubing provides fresh nutrients to the		116, 239-247
		cells which are confined in the flow NMR tube. The spent		,
	Holder adapter	medium leaves the tube through an outlet located at the		
		ton (see Figure below) Inlet and outlet tubing pass		
		through a 7-meter-long transfer line that is temperature-	Ontimization of	Luchinat E. Barhieri I
		controlled through a water bath set at 27°C	bydrogel_embedded	Comphell TE Banci I
	Outlet	controlled through a water bath set at 57°C.	sotup and	Anglutical chamistry 2020
	Flow out	The flow with is other hard to a FDLC on a UDLC survey	setup and	Analytical chemistry 2020.
		The flow unit is attached to a FPLC or a HPLC pump	application to	DUI 10.1021 (and a realish are 0.010
	Tube holder	through PEEK tubing (o.d. = $1/16^{\circ}$, i.d. = 0.5 mm). During	protein-ligand	10.1021/acs.anaichem.0c016
		the in-cell NMR experiments, unlabelled DMEM (Sigma-	interaction and	//.
	Twist cap	Aldrich D5648, powder, reconstituted in sterile-filtered	protein chemical	
		MilliQ H_2O and supplemented with 2% FBS, 10 mM	modification.	
		NaHCO ₃ , antibiotics and $2\% D_2O$, pH 7.4) is supplied at a		
	Sealing	flow rate of 0.05 ml/min or 0.1 ml/min. The growth		
	Flow tube	medium is contained in a 250 ml or 500 ml reservoir		
	Sample chamber	bottle kept at 37°C in the water bath. The bottle is sealed		
	nt	with a steel headpiece with two hose nozzles, one		
	Inlet —— 🚽	connected to the pump through a FEP tubing (o.d. = $1/8^{"}$,		
	i.d. = 1.6 mm), the other con	nected to a 0.22 μ m PTFE syringe filter for air intake.		
	The NMR bioreactor can be m	oved to different NMR spectrometers, and can be applied		
	to analyse cells either embed	ded in hydrogel or suspended in the culture medium.		
	,			
	Hydrogel-embedded cells			
	Human cells are embedded	in agarose threads (low-gelling agarose, Sigma-Aldrich,		
	A4018) that are cast directly i	n the flow tube which contains a ~5 mm-high bottom plug		
	of 1.5% agarose gel. The inlet	consists of a PEEK capillary tubing (o.d. = $1/32^{"}$, i.d. = 0.5		

mm) inserted in the NMR tube down to ~6 mm from the bottom, while the outlet is a PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) attached at the top of the tube holder.Suspended cells Suspended cells are placed in the internal volume of flow tube, and the standard outlet is sealed. Human cells are kept in suspension in fresh Dulbecco's modified Eagle's medium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within a cylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) in which inlet and outlet are coaxial. The microdialysis membrane is connected to two PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor.The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes.Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).		
PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) attached at the top of the tube holder. Suspended cells Suspended cells are placed in the internal volume of flow tube, and the standard outlet is sealed. Human cells are kept in suspension in fresh Dulbecco's modified Eagle's medium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within a cylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) in which inlet and outlet are coaxial. The microdialysis membrane is connected to two PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor. The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes.	mm) inserted in the NMR tube down to ~6 mm from the bottom, while the outlet is a	
Suspended cellsSuspended cells are placed in the internal volume of flow tube, and the standard outletis sealed. Human cells are kept in suspension in fresh Dulbecco's modified Eagle'smedium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within acylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) inwhich inlet and outlet are coaxial. The microdialysis membrane is connected to twoPTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor.The NMR bioreactor allows time-resolved multidimensional NMR experiments on highnumbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stablefor up to 72 hours. Time resolution varies with the type of experiment and with theamount of signal. Ligand binding to an overexpressed intracellular protein target wasobserved by 1D ¹ H NMR with a time resolution <7 minutes.	PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) attached at the top of the tube holder.	
Suspended cellsSuspended cells are placed in the internal volume of flow tube, and the standard outletis sealed. Human cells are kept in suspension in fresh Dulbecco's modified Eagle'smedium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within acylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) inwhich inlet and outlet are coaxial. The microdialysis membrane is connected to twoPTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor.The NMR bioreactor allows time-resolved multidimensional NMR experiments on highnumbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stablefor up to 72 hours. Time resolution varies with the type of experiment and with theamount of signal. Ligand binding to an overexpressed intracellular protein target wasobserved by 1D ¹ H NMR with a time resolution <7 minutes.		
Suspended cells are placed in the internal volume of flow tube, and the standard outlet is sealed. Human cells are kept in suspension in fresh Dulbecco's modified Eagle's medium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within a cylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) in which inlet and outlet are coaxial. The microdialysis membrane is connected to two PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor. The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	Suspended cells	
 is sealed. Human cells are kept in suspension in fresh Dulbecco's modified Eagle's medium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within a cylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) in which inlet and outlet are coaxial. The microdialysis membrane is connected to two PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor. The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi-automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS). 	Suspended cells are placed in the internal volume of flow tube, and the standard outlet	
 medium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within a cylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) in which inlet and outlet are coaxial. The microdialysis membrane is connected to two PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor. The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi-automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS). 	is sealed. Human cells are kept in suspension in fresh Dulbecco's modified Eagle's	
cylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) in which inlet and outlet are coaxial. The microdialysis membrane is connected to two PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor. The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	medium (2% FBS) in the presence of 30% Percoll. The flow of nutrients occurs within a	
 which inlet and outlet are coaxial. The microdialysis membrane is connected to two PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor. The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS). 	cylindrical membrane (CMA 20, 1 MDa MWCO; CMA Microdialysis, Solna, Sweden) in	
 PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor. The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi-automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS). 	which inlet and outlet are coaxial. The microdialysis membrane is connected to two	
The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi-automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	PTFE tubing (o.d. = 1/32", i.d. = 0.5 mm) serving as inlet and outlet for the bioreactor.	
The NMR bioreactor allows time-resolved multidimensional NMR experiments on high numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi-automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).		
numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	The NMR bioreactor allows time-resolved multidimensional NMR experiments on high	
for up to 72 hours. Time resolution varies with the type of experiment and with the amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi-automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	numbers of cells (3-6 x 10 ⁷ human cells) which are kept viable and metabolically stable	
amount of signal. Ligand binding to an overexpressed intracellular protein target was observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	for up to 72 hours. Time resolution varies with the type of experiment and with the	
observed by 1D ¹ H NMR with a time resolution <7 minutes. Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	amount of signal. Ligand binding to an overexpressed intracellular protein target was	
Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	observed by 1D ¹ H NMR with a time resolution <7 minutes.	
Quantitative analysis of the time-resolved NMR data can be performed in a semi- automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).		
automatic way to extract concentration profiles of different intracellular species, by multivariate curve resolution – least square fitting (MCR-ALS).	Quantitative analysis of the time-resolved NMR data can be performed in a semi-	
multivariate curve resolution – least square fitting (MCR-ALS).	automatic way to extract concentration profiles of different intracellular species, by	
	multivariate curve resolution – least square fitting (MCR-ALS).	